HIGH PERFORMANCE SIMULATIONS OF QUANTUM COMPUTING
WHY ARE THEY IMPORTANT?

Simulations are crucial for: Benchmarking quantum advantage with:
» Development of quantum computers » Quantum Fourier transform (QFT) [1]
» Verification of algorithms and hardware Common subroutine in quantum algorithms
> Defining the quantum advantage » Random circuit sampling (RCS/RAND)

» Understanding quantum systems Simplified version of Google’s circuit [2]:

» Noise modelling

Coming soon (maybe) — quantum processing
units (QPUs) as accelerators in HPC systems.
My PhD project focuses on:

» Existing simulators experiments

» Developing a new simulation framework

» Testing quantum models with it

» Pushing the limits of simulations
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HIGH PERFORMANCE SIMULATIONS OF QUANTUM COMPUTING
WHAT APPROACHES ARE THERE?

I. Statevector evolution: Qiskit [3] and QuEST [4] software.

> The Schrédinger’s approach: Both distributed with MPI:
Needs O(2") memory for 1 qubits QuEST uses huge messages; Qiskit swaps the
» The Feynman path approach: state with cache blocking [5].
Needs O(4%) time for d gates
» The combined approach:
Splits the state into 2 parts; uses the
Schrodinger’s method within each, and the
Feynman’s method for interconnections

QuEST up to 2 times faster for QFT simulation.
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To simulate Google’s 53 qubits, the combined
approach needed — would take 10,000 years [2].
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HIGH PERFORMANCE SIMULATIONS OF QUANTUM COMPUTING
WHAT APPROACHES ARE THERE?

II. Tensor network (TN) contraction: ITensor software [8] — sequential, but can still
» Generalisation of the statevector method show exponential speedup (sometimes).
» Arbitrary gate application order Truncate the entanglement to insert decoherence
» Best with optimal contraction order noise, and reduce runtime.
» Precomputes reusable parts

(unless too much memory used)

» Can be sped up by approximation

Managed to beat Google’s random sampling! [6]

Decompose TNs to matrix product states (MPSs)
and matrix product operators (MPOs) — explicit
control of the entanglement. [7]
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CPU downclocking — large energy savings at

HIGH PERFORMANCE SIMULATIONS OF QUANTUM COMPUTING
HOW TO EXECUTE THEM EFFICIENTLY?

small runtime penalty.
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Works well when the problem is not largely
compute bound — e.g. statevector simulation.
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Other options:

» Swap gates to reduce communication

» Decrease TN accuracy
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