
HIGH PERFORMANCE SIMULATIONS OF QUANTUM COMPUTING

WHY ARE THEY IMPORTANT?

Simulations are crucial for:
▶ Development of quantum computers
▶ Verification of algorithms and hardware
▶ Defining the quantum advantage
▶ Understanding quantum systems
▶ Noise modelling

Coming soon (maybe) – quantum processing
units (QPUs) as accelerators in HPC systems.

My PhD project focuses on:
▶ Existing simulators experiments
▶ Developing a new simulation framework
▶ Testing quantum models with it
▶ Pushing the limits of simulations

Benchmarking quantum advantage with:
▶ Quantum Fourier transform (QFT) [1]

Common subroutine in quantum algorithms
▶ Random circuit sampling (RCS/RAND)

Simplified version of Google’s circuit [2]:
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HIGH PERFORMANCE SIMULATIONS OF QUANTUM COMPUTING

WHAT APPROACHES ARE THERE?

I. Statevector evolution:
▶ The Schrödinger’s approach:

Needs O(2n) memory for n qubits
▶ The Feynman path approach:

Needs O(4d) time for d gates
▶ The combined approach:

Splits the state into 2 parts; uses the
Schrödinger’s method within each, and the
Feynman’s method for interconnections

ARCHER2 (1 PB of RAM) can store max 44 qubits
(maybe 45) with the Schrödinger’s method.

To simulate Google’s 53 qubits, the combined
approach needed – would take 10,000 years [2].

Qiskit [3] and QuEST [4] software.

Both distributed with MPI:
QuEST uses huge messages; Qiskit swaps the
state with cache blocking [5].

QuEST up to 2 times faster for QFT simulation.

Qiskit QuEST
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WHAT APPROACHES ARE THERE?

II. Tensor network (TN) contraction:
▶ Generalisation of the statevector method
▶ Arbitrary gate application order
▶ Best with optimal contraction order
▶ Precomputes reusable parts

(unless too much memory used)
▶ Can be sped up by approximation

Managed to beat Google’s random sampling! [6]

Decompose TNs to matrix product states (MPSs)
and matrix product operators (MPOs) – explicit
control of the entanglement. [7]

ITensor software [8] – sequential, but can still
show exponential speedup (sometimes).

Truncate the entanglement to insert decoherence
noise, and reduce runtime.
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HIGH PERFORMANCE SIMULATIONS OF QUANTUM COMPUTING

HOW TO EXECUTE THEM EFFICIENTLY?

CPU downclocking – large energy savings at
small runtime penalty.
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Works well when the problem is not largely
compute bound – e.g. statevector simulation.

ARM MAP profiles of QFT and RAND:
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Other options:
▶ Swap gates to reduce communication
▶ Decrease TN accuracy
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